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1 Introduction

This report is focused on a basic (6.1) level research on full motion video analysis with the objective of investigating

the process of motion blurring in planar scenes and to develop algorithms for blind restoration of blurred images

together with an estimate of camera motion. This is a topic of immense importance to the U.S. Air Force - with a

potential impact on image analysis, characterization and exploitation. The amount of full motion video clips that we

process has grown exponentially. These images are typically acquired for surveillance purpose, collected persistently

over a fixed field of view, albeit with varying degrees of relative motion between the camera and objects within

the scene. Motion blur results when there is relative motion between camera and scene. It has acquired special

significance with hand-held imaging, aerial imaging, and imaging ‘on the move’ shooting into prominence. It is also

relevant to situations where the camera is still but the scene comprises of several moving objects. The problem is of

great relevance within the overall context of aerial surveillance. Images captured from an aerial platform are normally

affected by motion blur due to instabilities of the moving platform. Smear caused by motion blur can severely dent

the utility of such data.

The ubiquity of imaging devices and the fact that practical cameras are real-aperture results in the natural preva-

lence of motion/optical blur in images [1]. The problem of image blurring has been around for many years, the major
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thrust having been on optical defocusing that occurs when the lens settings relative to a scene fail to satisfy Gauss law.

Depending on the nature of the scene, the resultant image can be either space-invariantly or space-variantly blurred.

Several works already exist that deal with optical blur in a comprehensive manner. Interestingly, recent times have

seen the resurgence of motion blur as an area of great relevance. In contrast to defocus, the occurrence of motion

blur is significantly higher in practical scenarios. Motion blur can be avoided provided the camera is placed on a firm

support. However, carrying sturdy accessories can be cumbersome and sometimes prohibitive. Even if one were to

use auxiliary sensors, blur cannot be completely avoided [2].

Unlike the optical blur, motion-blur can be space-varying even for planar scenes and is typically so since camera

motion invariably involves rotations. An example case is that of a rotating camera imaging a distant scene. In fact,

the shape of the blur kernel is a function of the scene as well as camera motion. For planar scenes, the shape of

the blur kernel is a function of camera motion while the weights of the kernel can be related to the exposure time

corresponding to the set of geometric transformations that the camera traversed along its motion trajectory. Unlike

the optical blur, the motion blur is a function of both camera motion and scene depth, has no a priori shape, and is

typically sparse. These characteristics make the motion blur unique in several respects as compared to the traditionally

well-understood optical blur.

Motion blurring is both a bane and a boon. Most works treat motion blur as nuisance and seek ways and means

to mitigate its effects so as to restore the original image. However, it must be emphasized that motion blur can

also serve as a vital cue for camera motion estimation, depth recovery, super-resolution, image forensics, etc. Blind

motion deblurring is both interesting and a technically challenging problem. The aim of this project was to study,

understand, investigate, and propose algorithms to meet our objectives primarily from a surveillance (not necessarily

aerial) perspective. The key challenge lay in handling the complexities (including loss of resolution) that arise from

space-varying local blurring due to incidental camera motion.

We started joint work with the AFRL team led by Dr. Guna Seetharaman in Sept. 2012. Our focus was on

restoration, registration, dehazing, and super-resolution of motion blurred images for planar scenes. There were

frequent information exchanges between the P.I. and the AFRL collaborator, at least once every quarter. The analytical

work focused on arriving at global explanations for the blurring process by modeling the motion-blurred image as

an average of projectively transformed images. Initially, we address restoration of space-variantly motion-blurred

images. This was followed by a method for registering blurred images to reveal change detection, if any. We then

discuss how to restore foggy motion-blurred images using depth cues derived from fog itself. Finally, for purpose
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of image super-resolution, the deblurring framework was extended to handle down-sampling effects too. For each of

these tasks, once the analytical formulations were in place, the simulation cum validation phase followed with tests

involving real data sets. Experimental verification of the algorithms, including computer simulations, was done to

refine both the theoretical analysis as well as the numerical implementation. While some of the results arising out of

these efforts have already been published in prestigious avenues, others are under review.

2 Restoration of motion blur

During the process of capturing an image, the camera shutter opens and closes to let light from the scene to fall on

imaging sensors. The shutter interval denotes the amount of time during which the camera sensors observe the scene.

The final image obtained from the camera is a function of the total light energy accumulated by the sensors. When

the shutter is open, if there is a motion of either the camera or the scene, a particular pixel in the image plane receives

light intensities from more than one point in the scene resulting in an averaging effect called as motion blur [1, 3, 4].

Let f denote the image captured from a camera when there is no relative motion during exposure (shutter interval).

i.e., f represents the unblurred latent image of the scene. Let g denote a blurred image captured when there is a relative

motion between the camera and the scene. The intensity value at a pixel of g will be an average of image intensities

at different pixels of f i.e.,

g(x, y) =
1

Te

∫ Te

0
f (x− x(x, y, τ), y − y(x, y, τ)) dτ (1)

where Te is the exposure time, and x(x, y, τ) and y(x, y, τ) denote the components of the apparent displacement of a

point (x, y) in f at time instant τ . In the special case where the displacement is the same for all the image points, we

have x(x, y, τ) = x0(τ), y(x, y, τ) = y0(τ) and

g(x, y) =
1

Te

∫ Te

0
f (x− x0(τ), y − y0(τ)) dτ (2)

All the image points undergo the same displacement only when the relative motion is restricted to in-plane translations

and when there is no effect of parallax (i.e., scene is a fronto-parallel plane). In this scenario, motion blur can be

modeled as a convolution of the original image with a point spread function (PSF) which is also referred to as a blur

kernel [3, 5]. i.e.,

g(x, y) = f ∗ h(x, y) =

∫ ∞
−∞

∫ ∞
−∞

f(x− s, y − t) h(s, t) ds dt (3)
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(a) (b) (c)

Figure 1: (a) Unblurred latent image of the scene. (b) Blur kernel. (c) Blurred observation.

The PSF h is given by

h(s, t) =
1

Te

∫ Te

0
δ (s− x0(τ), t− y0(τ)) dτ (4)

where δ indicates the 2D Dirac-delta function. An interesting interpretation of equation (3) is that the blurred image

g is a weighted average of translated instances of the original image f . The PSF h denotes the weights corresponding

to every possible translational shift of the camera. The value of the weight at a position is equal to the fraction of the

exposure duration spent by the camera in that shifted position. In the special case where the camera velocity is uniform

and along a particular direction, the PSF will have uniform weights only along a straight line whose angle denotes the

direction of motion. Note that the PSF cannot be negative. Since the relative motion is arbitrary, we cannot represent

a motion blur kernel in terms of a predetermined functional form. Also, motion PSF is typically sparse because the

displacements undergone by a scene-point form only a small subset of all possible shifts. If the exposure duration is

the same for the original image as well as the blurred image, the magnitude of light energy accumulated will be the

same for both the observations. Hence, by principle of energy conservation, the PSF integrates to unity.

In Fig. 1, we show the effect of space-invariant motion blurring. The original image of a scene was captured from

a still camera as shown in Fig. 1 (a). In Fig. 1 (c), we show the motion blurred image obtained when there was a

camera shake during exposure. The blur kernel given in Fig. 1 (b) depicts the direction of camera translation. Since

the camera motion was predominantly along vertical direction, we observe smearing effect along that direction in Fig.

1 (c).
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2.1 Motion blur and TSF model

When the camera motion is not restricted to in-plane translations, the apparent motion of scene points in the image

will vary at different locations resulting in space-variant blurring. The convolution model with a single blur kernel

does not hold in such a scenario. However, when the scene depth is constant, the blurred image can be accurately

modeled as a weighted average of the warped instances of the original image [6, 7, 8, 9].

Let the image of a scene captured by a still camera be denoted by f : R2 → R. Let X = [X Y Z]T denote the

spatial coordinates of a point in the scene with the camera center as the origin. The projection of X in the image plane

(x, y) is given by x = νX
Z and y = νY

Z where ν denotes the focal length. Using homogeneous coordinates, the image

point x = [x y 1]T can be written as KνX. In this discussion, Kν is assumed to be of the form

Kν =


ν 0 0

0 ν 0

0 0 1

 (5)

Due to camera motion during image capture, at each instant of time τ , the coordinates of the 3D point X changes

to Xτ = RτX + Tτ with respect to the camera where Tτ = [TXτ TYτ TZτ ]T is the translation vector. The rotation

matrix Rτ is parameterized [10] in terms of θX , θY and θZ (the angles of rotation about the three axes) using the

matrix exponential

Rτ = eΘτ where Θτ =


0 −θZτ θYτ

θZτ 0 −θXτ

−θYτ θXτ 0

 (6)

We consider that all of the scene points are at a depth do from the camera. Consequently, the point xτ at which Xτ

gets projected in the camera can be obtained through a homography Hτ as xτ = Hτx where

Hτ = Kν

(
Rτ +

1

do
Tτ [0 0 1]

)
K−1
ν (7)

Let gτ denote the image captured at time instant τ . For the sake of simplicity, we use the same notation (x) for the

homogeneous coordinates as well as for the coordinates in the image plane. Then we can write gτ (x) = f
(
H−1
τ x

)
where H−1

τ denotes the inverse of Hτ (since gτ (Hτx) = f (x)). The blurred image g can be considered as the

average of the light intensities observed in the image plane during exposure. The blurred image intensity at an image
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point x is given by

g (x) =
1

Te

Te∫
0

f
(
H−1
τ x

)
dτ (8)

where Te is the total exposure duration.

Note that, when averaging over time, the temporal information (order of the set of transformations undergone by

the reference image) is lost. But this is a non-issue for the problem on hand. The blurred image can be more appropri-

ately modeled in terms of the reference image, by averaging it over the set of possible transformations (resulting from

the camera motion). Let T denote the set of all possible transformations and Υ denote a transformation. We define

the transformation spread function (TSF) ω : T →R+ as a mapping from the set T to non-negative real numbers. For

each transformation Υ∈T , the value of the TSF ω (Υ) denotes the fraction of the total exposure duration for which

the camera was in the position that caused the homography H−1
Υ on the image coordinates. It is to be noted that the

term Υ denotes the transformation parameters corresponding to the homography matrix H−1
Υ , and does not indicate

a time instant. The blurred image can be written as an average of the warped images weighted by the TSF ω. i.e.,

g (x) =

∫
Υ∈T

ω (Υ) f
(
H−1

Υ (x)
)
dΥ (9)

When the camera motion is not restricted, the paths traced by scene points in the image plane can vary across

the image resulting in space-variant blur. However, the blurring operation can be described by a single TSF using

equation (9). The TSF depicts the camera motion during exposure. For instance, if the camera undergoes only in-

plane rotations, the TSF will have non-zero weights only for the rotational transformations. Analogous to a blur

kernel, the TSF satisfies the relation
∫

Υ∈T
ω (Υ) = 1 (assuming equal amount of light energy is involved in the

formation of f and g).

Although, the TSF model is more efficient than the PSF model in representing space-variant motion blur, it is

useful to relate the two models. The blurred image g can be modeled with a space-variant PSF h as

g (x) = f ∗v h (x) =

∫
f (x− u)h (x− u,u) du (10)

where h (x,u) denotes the blur kernel at the image point x as a function of the independent variable u. The PSF

h (x,u) represents the displacements undergone by a point light source at x during the exposure and is weighted ac-

cording to the fraction of the exposure time the light source stays at the displaced position. Following our discussions
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in section 2, the PSF can be written as

h (x,u) =
1

Te

Te∫
0

δ (u− x̄τ ) dτ (11)

where δ indicates the 2D Dirac Delta function and x̄τ is the instantaneous displacement. It is to be noted that for

brevity, we use the vectors x and u to indicate locations. The PSF h at an image point x can be obtained from the TSF

ω by finding the displacement induced due to each of the possible transformations. This relationship can be written as

h (x,u) =

∫
Υ∈T

ω (Υ) δ (u− (HΥx− x)) dΥ (12)

Consider the scene whose latent image is shown in Fig. 2 (a). There were no depth variations in this scene.

However, the camera underwent in-plane rotational motion during image capture leading to the non-uniformly blurred

image shown in Fig. 2 (b). We note that the region around the image center does not appear blurred while the effect

of blurring increases as we move away from the center.

(a) (b)

Figure 2: (a) Unblurred image. (b) Space-variantly blurred observation.

2.2 Related works

The problem of inferring an image in the presence of blur (which corresponds to image deblurring) has been widely

studied in the literature [4, 7, 11, 12, 13]. Traditional approaches assume blur to remain constant across all the image

points. This will be the case when the camera motion is restricted to in-plane translations and the scene is of constant
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depth. A lot of approaches that address the problem of blind motion deblurring exist in the literature for the case

of uniform blur [4, 14, 15, 16]. A comparison of recent deconvolution techniques for space-invariant blur can be

found in [13]. In practical scenarios, blurring due to camera shake is space-variant in nature and the convolution

model does not hold [17]. [18] have proposed a non-blind deblurring scheme which estimates the latent image even

if the blur kernels are erroneous and demonstrated its applicability for space-variant blur. Based on this work, in [19],

they address blind space-variant deblurring by estimating the blur kernel at each pixel. Techniques exist that address

restoration of non-uniform blur by local space-invariance approximation [20, 21]. Recent techniques avoid such an

approximation by modeling the motion-blurred image as an average of projectively transformed images [6, 7, 8, 9]. In

this approach, blur is modeled by considering the transformations undergone by the image plane rather than using a

point spread function which varies at every pixel. [6] have proposed a deblurring scheme for the projective blur model

based on Richardson Lucy deconvolution. However, they do not address the problem of determining the blurring

function. [7, 10] propose an image restoration technique for non-uniform motion-blur arising due to camera rotations.

They represent the blurring function on a 3D grid corresponding to the three directions of camera rotations. For the

case of blind image restoration, the kernel estimation framework is employed in [4]. When a noisy version of the

original image is available, a least-squares energy minimization approach is used for finding the blurring function.

[9] have proposed another blind deblurring scheme wherein the camera motion is considered to be comprised of 2D

translations and in-plane rotation. Their technique is based on the method in [14]. In the restoration technique by

[22], sensors are attached to the camera to determine the blurring function. [23] propose a deblurring scheme that uses

coded exposure and some simple user interactions to determine the space-variant PSF. [24] propose a new approach

to restore non-uniform motion blur by using the efficient filter flow framework [25]. In [26], a new regularization

scheme that compensates attenuation of high frequencies is used to perform blind deblurring. While [27] uses two

non-uniformly blurred observations and iteratively solve for the latent image and its transformations, in [28], the

authors propose to iteratively estimate the latent image and the blur from a single image.

2.3 Blind image restoration

Our algorithm proceeds by updating the estimate of the camera pose at one step, and the latent image in the next. To

this end, we minimize the following energy function. Let ω = hT and l = f . The cost to be minimized is

E(w, l) =

∣∣∣∣∣
∣∣∣∣∣
(∑
k∈T

ω(k) · l(Hkx)

)
− b

∣∣∣∣∣
∣∣∣∣∣
2

2

+ Φ1(l) + Φ2(w) (13)
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where w denotes the vector of weights ω(k), Φ1 and Φ2 represent the regularization terms on the latent image l and

the weights w, respectively. The regularization terms will be explained in the following sub-sections.

2.3.1 TSF estimation

In the TSF estimation step, we compute w given the current estimate of the latent image l based on equation 13. Our

algorithm requires the user to specify a rough guess of the extent of the blur (translation in pixels along x,y axes and

rotation in degrees along z axis) to build the initial TSF. The three-dimensional camera pose subspace, whose limits

are specified by the user, is uniformly sampled to build the first ‘active’ set of camera poses. We denote this active

set by A where A ⊂ T. (In our experiments, the active set contained 200 poses which is still much smaller than the

1500-2000 poses that the whole space T would contain even for small to moderate blurs.) Our algorithm requires no

other user input.

Figure 3: Overview of the proposed deblurring algorithm.

In the first iteration, we optimize over the initial TSF (obtained in 2.3.1) by minimizing the following energy

function

E(w) =

∣∣∣∣∣
∣∣∣∣∣
(∑
k∈A

ω(k) · l(Ĥkx)

)
− b

∣∣∣∣∣
∣∣∣∣∣
2

2

+ Φ2(w) (14)

where Φ2(w) = β||w||1, a sparse prior. Since image derivatives have been shown to be effective for reducing

ringing effects [14], we work on gradients instead of image intensities in our implementation of equation 14. This

optimization problem can be solved using the nnLeastR function of the Lasso algorithm [29] which considers the

additional l1 − norm constraint and imposes non-negativity on the TSF weights. Only the ‘dominant’ poses in the

active set A are selected as a result of the sparsity constraint imposed by the l1 − norm and the remaining poses

which are outliers are removed. We now rebuild the active set for the next iteration so that its cardinality is the same

as the A of the current iteration. The new poses are selected, in a manner similar to [28], by sampling based on the
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current A using a Gaussian distribution. In the next iteration, equation 14 is minimized over this new active set. The

variance of the Gaussian distribution is gradually reduced with iterations as the estimated TSF converges to the true

TSF. Experiments on synthetic and real data have shown that our algorithm exhibits good convergence properties and

does not get stuck in local minima. We used a β value of 0.5 for our experiments.

2.3.2 Latent image estimation

We first perform image prediction at each iteration before the TSF estimation step to obtain more accurate results

and to facilitate faster convergence. The prediction step consists of bilateral filtering, shock filtering and gradient

magnitude thresholding. The predicted image, denoted by l̂ is sharper than the estimated latent image l from the

previous iteration and has fewer artifacts.

The latent image l is estimated by fixing the TSF weights w. The blurring matrix is constructed using only the

poses in the active set since the weights of the poses of the inactive set are zero, i.e. Ĥ =
∑

k∈A ω(k)Hk and the

energy function to be minimized takes the form

E(l) = ||Ĥl− b||22 + Φ1(l) (15)

We use the regularization terms in [14] and a conjugate gradient approach for optimization. An overview of our

method is given in Fig. 3.

2.4 Results

We tested out method on synthetic and real data. Fig. 4 shows a synthetic case where a focused original image was

blurred using a randomly generated 3D TSF to obtain the blurred image in Fig. 4(a). The parameters of the TSF

ranged as follows: θ ranged between -1.5 to 1.5 degrees in steps of 0.25, tx and ty ranged between -4 to 4 pixels in

steps of one pixel. The number of non-zero transformations in the TSF was set to 25. The poses in the TSF are defined

in such a way that it depicts the path traversed by a camera with non-uniform velocity. A slightly overestimated blur

size of -2 to 2 degrees along θ, -5 to 5 pixels along tx and ty was input to our deblurring algorithm. Our deblurred

result (Fig. 4 (b)) is sharp and is free from artifacts.

The real examples shown in the first and second rows of Fig. 5 are aerial images from VIRAT dataset. The efficacy

of our method in deblurring these real images is clearly evident from the artifact free and sharp output results.
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(a) (b)

Figure 4: (a) Blurred observation. (b) Deblurred result.

3 Registration and occlusion detection in motion blur

Detecting occluded regions in images is an extensively studied problem in image processing and computer vision due

to its applicability to a vast range of areas such as tracking, surveillance, object recognition, inpainting [30], [31],

[32], [33], [34] etc. The objective, in a typical setting, is to automatically detect occlusion(s) given a pair of images

taken from different view points and at different times. The occlusions themselves may have been caused by the

entry or disappearance of objects in the scene within the time-span of the two observations. A common approach

is to first compensate for the variations in pose by registering the two images with respect to each other followed

by differencing to reveal changes in the scene. For small occlusions, the images can be aligned even using standard

registration techniques [35], [36] that do not account for occlusions. This is because the matching of unoccluded pixels

can be expected to sufficiently outweigh any possible degradation arising from attempting to match occluded pixels

with unoccluded pixels and vice versa. However, larger occlusions warrant methods that detect the occluded pixels and

exclude them from the registration process [37]. This challenging problem of detecting occlusions becomes even more

ill-posed if one of the images in the pair is blurred due to the presence of camera shake. This is often the case when

a quick fly-through is attempted for the recoverage of a particular geographic area, for which detailed surveillance

images (i.e., latent images) are already available. Moreover, if the revisit is made at a time when the luminance is

weak [38], then the exposure time needs to be increased, thereby increasing the chances of motion blur. Detecting

occlusions is important for revealing changes in infrastructure, deployment of military units, modification/introduction

of equipment etc. As pointed out in [39], traditional registration methods such as direct and feature-based approaches

cannot be used in such a case due to photometric inconsistencies introduced by the blur. The alignment approach
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(a) (b)

Figure 5: VIRAT dataset. (a) Motion-blurred real observations. (b) Deblurred results.

presented in [39] is based on the convolution model and applies only to the restrictive uniform blur case. However,

in the case of general camera motion, the blur incurred can be significantly non-uniform across the image, and a

space-varying formulation becomes necessary to describe the blurring process. It is this compounded scenario that

we address in this work. Note that there can be more than one occluder.

While conventional approaches to detecting occluder(s) would require one to follow the deblur-register-difference

pipeline, we present a unified framework which directly solves for the occluder(s) by accounting for the non-uniform

blur and the changes in camera pose given a blurred/unblurred image pair. We show that direct registration of the pair

is possible without the need for deblurring. Registration, in this context, tantamounts to estimating the set of warps

which when applied on the focused image aligns it with the blurred image in the region of overlap. The elegance of

our method lies in the fact that registration and occlusion detection turn out to be a natural fallout of our blur esti-

mation process. We assume that the occluded pixels occupy only a relatively small portion of the image and that the

camera motion trajectory is sparse in the camera motion space. We also assume the scene to be sufficiently far away

so that depth variations can be ignored. We use a multiscale approach in which the image resolution is varied from
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coarse-to-fine, thus rendering the algorithm efficient both in terms of computational time and memory requirements.

3.1 Sparsity, registration and occlusion handling

If l, b represent the latent image and the blurred image, respectively, lexicographically ordered as vectors, then, in

matrix-vector notation we can write

b = Aω (16)

whereA is the matrix whose columns contain projectively transformed copies of l, and ω denotes the vector of weights

ω(k). Note that ω is a sparse vector since the blur is typically due to incidental camera shake and only a small fraction

of the poses in T will have non-zero weights in ω.

In the scenario that we consider, one of the images in the pair is not only blurred because of camera jitter but can

also contains occluder(s). To deal with this situation, we modify the linear model of (16) as

bocc = b + o (17)

where bocc is the blurred and occluded observation. In the image formation model, the occlusion happens first

followed by blurring, i.e., bocc is the weighted average of warped instances of an unknown focused image containing

occlusions. The non-zero entries of o, therefore, model the blurred occluder(s) in bocc. Since the occluder(s) can

have arbitrary intensities, techniques designed for small noise cannot be used here. The locations of occlusion differ

for different input images and are not known a priori to the algorithm. But we assume that the occluded pixels occupy

only a relatively small portion of the image. Therefore, the occlusion vector o, in the same vein as the vector ω, has

sparse non-zero entries [40]. Since b = Aω, we rewrite equation (17) as

bocc =
[
A I

] ω

o

 = Bx (18)

Here B = [A I] ∈ RN×(NT+N), where N is the total number of pixels in the image, NT is the total number of

transformations in T, and I is an N ×N identity matrix. Hence, the system bocc = Bx is always underdetermined

and does not have a unique solution for x. We, therefore, attempt to recover x as the sparsest solution to the system

bocc = Bx. Note that in the absence of occlusion, x = ω and our problem reduces to the special case of estimating

a sparse TSF.
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With the occlusion model incorporated, the energy function to be minimized takes the form

E(x) = ||bocc −Bx||22 + β||x||1 (19)

s.t ∀k ∈ T, ω(k) ≥ 0 and
∑

k∈T ω (k) = 1.

In the absence of an occluder, the convex combination of the elements of a particular row, say i, of A produces

the intensity of the blurred pixel at the ith location in the image. If the observed intenstiy (in bocc) at the ith pixel

is greater than the maximum intensity of the elements of the ith row, then, by convexity, we can deduce that it is

the presence of a bright occluder that causes the intensity at that pixel to increase. A positive value in o will then

explain the observed intensity at that pixel. On the other hand, if the observed intensity at the ith pixel is less than

the minimum intensity of the elements of the ith row, we conclude that the occluder is dark. In this case, we replace

the ‘1’ at the corresponding location in I with a ‘-1’. This change in sign permits us to impose non-negativity on x

because the residual can now take both positive and negative values. Thus B now becomes [A Imod] where Imod is a

diagonal matrix (with +1 and -1 along the diagonal) obtained after verifying the above condition.

3.2 Experiments

This section consists of two parts. We first evaluate the performance of our algorithm on synthetic data. Following

this, we demonstrate the applicability of the proposed method on real images.

We begin with a synthetic example. A latent image of size 240 × 240 pixels of an airport bay is shown in Fig.

6(a). The same scene from a different camera pose and with synthetically added occluders (enclosed in red boxes)

is shown in Fig. 6(b). The TSF space is chosen as follows- in-plane translations: Tx, Ty = [−7 : 1 : 7], in-plane

rotation: Rz = [−3◦ : 1◦ : 3◦], out-of-plane translation: Tz = [0.95 : 0.05 : 1.05] and out-of-plane rotations:

Rx, Ry = [−4
3 ◦ : 1

3◦ : 4
3◦]. To simulate the motion of the camera, we manually generate 6D camera motion with a

connected path in the motion space and initialize the weights. The synthezied camera motion (TSF model) is applied

on Fig. 6(b) to produce the blurred and occluded image (Fig. 6(c)). To evaluate the proposed method, we set the

number of scales in the multiscale implementation to 3 and first coarsely align the latent image and the blurred and

occluded image at the lowest resolution without accounting for occlusion. In this step, the transformation intervals are

expanded to Tx, Ty = [−40 : 1 : 40] and Rz = [−8◦ : 1◦ : 8◦] to accommodate for the large change in pose between

the two images. Note that this increase in the transformation intervals is not very demanding because we work at the

lowest resolution of the image and the TSF in the multiscale algorithm. The ‘dominant pose’, i.e., the pose with the
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(a) (b) (c) (d) (e)

Figure 6: (a) Latent image, (b) latent image from a different camera pose and with synthetically added occluders, (c)

blurred and occluded observation, (d) latent image reblurred using the estimated camera motion and overlaid on the

blurred and occluded observation, and (e) residual image.

highest weight from the estimated vector ω is used to align the latent image with the blurred image. The TSF is now

built around this dominant pose and we minimize equation (19) using the multiscale approach but now by also taking

occlusions into consideration. Fig. 6(d) shows the latent image reblurred using the estimated ω and overlaid on the

blurred and occluded observation. It is to be noted that the TSF model implicitly accounts for the change in pose

between the two images. The residual image shown in Fig. 6(e) is the absolute difference between the blurred and

occluded observation (Fig. 6(c)), and the reblurred latent image. Note that the occluders are correctly detected.

A real example but with an appreciable change in view point is shown in Fig. 7. A zoomed-in view of the blurred

occluders (in this case people) is shown in Fig. 7(c). The latent image reblurred using the estimated ω and registered

with the blurred and occluded observation is shown in Fig. 7(d). The residual image (Fig. 7(e)) reveals that the dark

occluders have been accurately detected by the proposed method. Fig. 8 depicts an example from VIRAT dataset in

which, after the process of registration, the moving truck has been detected correctly as occlusion in Fig. 8(d).

4 Restoration of foggy and motion-blurred scenes

In a medium such as fog, light rays get attenuated space-variantly before they reach the camera sensor. The scattering

coefficient of such a medium is high and each ray gets attenuated by a multiplicative factor that is an exponentially

decaying function of the scene depth and scattering coefficient. Most of the methods for defogging need more infor-

mation than just a single image. In [41], multiple images of the same scene under different atmospheric conditions

were used. In [42], prior knowledge of the depth map was used while in [43] a polarization filter was employed.
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(a) (b) (c) (d) (e)

Figure 7: An aerial view of a parking lot. (a) Latent (unblurred) image, (b) blurred and occluded observation taken

from a different view point, and (c) zoomed-in regions showing the presence of non-uniform blur, (d) reblurred latent

image registered with the blurred and occluded observation, and (e) residual image.

(a) (b)

(c) (d)

Figure 8: VIRAT dataset. (a) Blurred scene with no activity. (b) Blurred scene with activity. (c) Image of (b) after

registration. (d) Detected activity.
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Recently, single image defogging techniques have been proposed in [44, 45]. A refined image formation model was

used in [44] to account for surface shading while in [45], the dark channel prior was used.

We investigate the problem of motion blur due to camera shake in a foggy scene and mathematically justify that

the motion-blurred and medium-attenuated scene radiance can be modelled using a modified image formation model

in fog wherein the motion-blurred radiance replaces the original scene radiance. The dark channel prior is then used

to get a coarse depth map of the scene along with the blurred scene radiance. For in-plane translational motion-blurred

images, the depth map is directly used for restoration by exploiting the scaling relationship among the motion blur

kernels at different depths. For the case of general camera motion, blur kernels are estimated at multiple patches and

they could be at different depths. The blur kernel at a point is written as a convex sum of weighted impulses located at

the displacements undergone by a pixel under the influence of camera motion. These kernels help deduce the camera

motion responsible for the observed blurring. While the blur induced by rotation is depth-invariant, the coarse depth

map derived from fog is used to scale the translational motion by scene depth. Fog is also used as a cue to segment

road scene images into road, left, right and sky planes. Finally, knowledge of the camera motion is used in conjunction

with segmentation to deblur each of these planes. The framework can be comfortably applied on aerial images too

wherein only the ground plane exists.

4.1 Image formation in haze and blur

In the absence of motion blur, a color image captured in fog can be written [44, 45] as

I(x) = t(x)J(x) + (1− t(x))A (20)

where J is the scene radiance, A (a constant) is the ambient light in the atmosphere, x is a vector representing the

spatial location of a pixel, and t is related to the medium scattering coefficient (β) and scene depth (d) through the

relation t(x) = exp(−βd(x)). If the camera underwent shake during exposure, then the captured image would be a

blurred version of the original image. We can write this as

B(x) =
1

Te

Te∫
0

I(x− xτ ) dτ (21)
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where Te is the camera exposure time and xτ is the motion path of pixel x. Therefore, the blurred image captured in

fog can be written in integral form as

B(x) =
1

Te

Te∫
0

[J(x− xτ ) exp(−βdx−xτ )

+A(1− exp(−βdx−xτ ))] dτ

Since neighboring points x and (x− xτ ) will be approximately at the same depth, we can write

B(x) =
1

Te
exp(−βdx−xτ )

Te∫
0

J(x− xτ ) dτ

+(1− exp(−βdx−xτ ))A

It is interesting to observe that the above equation is very similar in form to the fog image formation model

(equation (20)) except that J has been replaced by the term 1
Te

Te∫
0

J(x− xτ ) dτ , which is, in fact, the blurred radiance

of the scene captured in a lossless medium. Consequently, we can write the modified image formation model taking

both blur and fog into account as

I(x) = t(x)JB(x) + (1− t(x))A (22)

where JB = 1
Te

∫ Te
0 J(x− xτ ) dτ . The implication of this result is that a coarse depth map and blurred radiance can

be obtained using dark channel prior [45] akin to the case of a pure foggy image. We express the dark channel of the

motion blurred radiance as

JBdark(x) = min
s∈ω(x)

min
c

(JBc(s)) (23)

where the color-channel is c and ω(x) is a small neighborhood around pixel x. As discussed in [45], the principle

behind a dark channel prior is that one of the color channels in the proximity of a point is close to zero for outdoor

scenes. Since JB is, in fact, a blurred version of the scene radiance, it stands to reason that JBdark(x) will be close

to zero. Consequently, equation (22) yields t(x) as

t(x) = 1− min
s∈ω(x)

(
min
c

(
Ic(s)

Ac

))
(24)

A scaled depth of the scene can thus be inferred using the relationship between transmission and depth. Since the

airlight can be computed easily, we can obtain JB from equation (22). Because of the min operation, blocky artifacts

can appear in the depth map as well as in the recovered scene radiance. These can, however, be removed by using

closed-form matting followed by bilateral filtering.
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4.2 Motion Deblurring in fog/haze

In this section, we first discuss deblurring under pure translations and then examine the case of general camera motion.

The blurred scene radiance and depth map are obtained as discussed in the earlier section.

4.2.1 Translational motion

The motion blur kernel at a point x can be written as

h(x; s) =
1

Te

∫ Te

0
δ(s− x̄(x, τ)) dτ (25)

where Te is the camera exposure time while x̄ is the motion path of pixel x as a function of τ . For pure camera

translations, the blur kernels at different pixels on the image are related by their relative depths. If d0 is the scene

depth of a pixel where the translational motion blur kernel is h0(s), then the blur kernel at any other point x that is at

a depth d(x) is

h(x; s) = k2(x)h0(k(x)s) (26)

where k(x) is the ratio d(x)
d0

. Using this relationship, we can obtain the blur kernel at any point in the image from a

reference kernel and the relative depth map. The blurred radiance can be expressed as

J′B = CI′ (27)

where the matrix C consists of blur kernels at every pixel lexicographically ordered in each row, the vector J′B is

obtained by lexicographically ordering JB, while the original image is represented as column vector I′. The above

equation is solved for I′ using conjugate gradient squared method since the blur matrix C is asymmetric. A look-up

table is constructed for discrete steps of depth values and the matrix multiplication C is equivalently done with a

pixel-wise blur operation. Thus, the original (deblurred) radiance can be recovered.

4.2.2 General camera motion

Deblurring in the presence of general camera motion is more involved since the blur kernels at different locations are

no longer related by just a scale factor. In our approach, we first use fog itself as a cue to segment the scene into road,

left, right and sky planes using the planar road constraint [46]. Following this, the motion blur induced on each of
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these planes is inferred based on the estimated camera motion. Finally, each of these planes is deblurred using the

projective motion-blur model. For aerial imagery, only the ground plane exists.

4.2.3 Scene segmentation

For road scenes, under the planar assumption [46], an inverse relationship exists between the image height (i.e., the

row number) and the scene depth in the road region. For a 3D point (X,Y, Z), the X and Y co-ordinates would be

constant for all the points on the road (assuming a flat planar surface for the road). Thus, we can write t as a function

of y as

t(x) = exp (−βd(x)) = exp

(
−β fY

y

)
(28)

From equation (20), we get the original scene radiance as

J =
I− (1− t)A

t
(29)

Thus, note that for image points that do not correspond to the road, t will be underestimated by equation (28) and

this will lead to negative values for J since (1 − t) will be high. We make all the positive-valued pixels obtained

from equation (29) equal to 1 and the rest to 0 to get a binary image. We use median filtering to smoothen this image.

The result is a segmentation of the scene into road, left, right and sky planes. Approximate distances to each of these

planes are assumed to be known apriori.

(a) (b)

Figure 9: (a) Foggy road image. (b) Segmentation result.

The segmentation result obtained for the foggy road image of Fig. 9(a) is shown in Fig. 9(b). The white pixels

depict the road and sky regions in Fig. 9(b).

As discussed earlier, a planar homography relates any two views of the same planar scene and is given [47, 48] by

H = K

(
R +

1

d
TnT

)
K−1 (30)
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where K is the camera calibration matrix, R is the 3D rotation matrix, T is the 3D translation vector, while n and d

are the plane normal and perpendicular distance from the camera center, respectively. A motion blurred image of an

arbitrary plane can be written as

B(x) =
∑
λ

hT(λ)I(Hλx)

where Hλ is the homography matrix that relates the view λ to the reference view and hT(λ) is the fraction of time

that the camera spends in view λ during the exposure time.

The cross-section of a plane at a particular depth Z = c can be written as

n1X + n2Y + n3c = d

The projection of any point
(
a, d−n1a−n3c

n2
, c
)

on this line onto the image plane would be x = a
c and y = d−n1a−n3c

n2c
.

For pure in-plane translation and rotation of the camera, assuming the focal length to be unity (for simplicity), the

plane image point would move to the position given by a 2D transformation

Hx =

cos(θz) − sin(θz)

sin(θz) cos(θz)

 a
c

d−n1a−n3c
n2c

+

Txc
Ty
c

 (31)

The displacement of a small patch lying on the plane would be given by the above relation (31).

The point spread function at a point x can be related to the camera motion (hT(λ)) as

h(x; s) =

∫
λ

hT(λ)δ(s− (x−Hλx)) dλ

Using this relationship, we can write a matrix equation that relates blur kernels to camera motion as

h = MhT (32)

where h is a column vector of blur kernels lexicographically ordered and M is a matrix that holds the value 1 at

rows corresponding to the displacement of a patch under camera transformation Hλ. The depth d is factored into the

computations using the coarse depth map estimated from equation (24). Following [9], we consider only the three

parameters (tx, ty and θz) when estimating camera motion. Equation (32) is solved with L1 norm sparsity constraint

on hT.
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(a) (b) (c)

Figure 10: (a) Foggy and motion-blurred road image. (b) Defogged image. (c) Defogged and deblurred result.

4.2.4 Motion deblurring of planes

The projective motion Richardson-Lucy algorithm of Tai et al. [6] deblurs the image of a fronto-parallel scene under

known camera motion. We can deblur an arbitrary plane after estimating the camera motion using the technique in the

previous section. The likelihood probability P (B,hT|I) is modeled using Poisson distribution and the Kuhn-Tucker

conditions are used to arrive at the iterative update equation for the original radiance given the camera motion hT as

In+1 = In
∑
λ

hT(λ)En(H−1
λ x) (33)

where En is an error matrix given by En = B
B′n where the division is point-wise. Note that B′n is the blurred scene

radiance of the plane under consideration and can be obtained from In as

B′n =
∑
λ

hT(λ)In(Hλx) (34)

In addition, the total variation prior [6] is used to preserve edges.

4.3 Experimental results

In this section, we give representative results for restoring foggy and motion blurred images in real scenarios.

We first examine a road scene image that had incidental motion blur which was non-uniform. This image was taken

outside our department with a mobile phone camera. Since it was raining, the collective appearance of raindrops made

the scene appear foggy (Fig. 10(a)). The blurred scene radiance and coarse depth map were obtained from equation

(22). We computed blur kernels at four different locations in the image. Using the depth map and these blur kernels,

the camera motion was estimated using equation (32). The foggy images were segmented into road, left, right and sky
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planes using the planar road constraint. Each of these planes was then deblurred using equation (33). The defogged

and deblurred result is shown in Fig. 10(c) wherein we can observe the improvement that accrues due to deblurring.

The first row of Fig. 11 depicts deblurring as well as dehazing of a real aerial image from VIRAT dataset. Note the

improvements in the restored image over the observation. We also show results on another real aerial image (second

row of Fig. 11) kindly provided by Dr. Steve Sudarth from Transparent Sky, USA. The appearance after deblurring

and dehazing is quite striking.

(a) (b)

Figure 11: VIRAT dataset (first row) and another real aerial image (second row). (a) Hazy and motion-blurred image.

(b) Dehazed and deblurred result.

5 Multi-frame blind super-resolution of non-uniformly blurred images

The effective resolution of an imaging system is limited not only by the physical resolution of its image sensor but also

by blur. If the blur is present, super-resolution makes little sense without removing the blur. The presence of a spatially
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varying blur makes the problem much more challenging and for the present, there are almost no algorithms designed

specifically for this case. The critical part of such algorithms is precise estimation of the varying blur, which depends

to a large extent on a specific application and type of blur. However, non-uniform deblurring and super-resolution,

though two extensively studied topics, have mostly been dealt with independently. The importance of deriving a high-

resolution image from low-resolution observations is very well-known and is an active area of research. However,

what is not obvious is the fact that a motion blurred image can be used to perform SR. This is due to the fact that

the motion blurred image of a planar scene stems from the weighted average of a sequence of geometric warps of the

original scene.

A large number of papers address the standard SR problem when the images are not blurred. A good survey

can be found for example in [49] and [50]. Maximum likelihood, maximum a posteriori (MAP), the set thoeretic

approach using projection on convex sets, and fast Fourier techniques can all provide a solution to the SR problem.

Spatial-domain SR approaches are popular as they can accommodate complex priors and can handle even non-global

motion [49]. A multi-frame SR method to detect and reconstruct small rigid moving objects with translucent pixels

is elaborated in [51]. Movements between adjacent frames are generally assumed to be smooth [52], but due to

object and/or camera motion, the shifts in the frames can be space-variant. Brox and Malik [53] employ an optical

flow method which is well-suited for large local motion. However, state-of-the-art SR techniques achieve remarkable

results of resolution enhancement only in the case of no blur.

Sroubek and Cristbal [54] propose a unifying method that simultaneously estimates the camera motion and the

HR image from a set of blurred LR observations without any prior knowledge of the blurs and the original image.

Harmeling et al. [55] solve the same multi-frame super-resolution problem using an incremental expectation max-

imization (EM) framework that does not require explicit image or blur priors. But these approaches are based on

the standard convolution model and is restricted to translational motion. They do not tackle the more real case of

space-varying blur. A naive approach to tackling this scenario includes applying super-resolution using the convolu-

tion model to small space-invariant regions in the image and then sewing up the patches. Unfortunately, it is not easy

to sew the patches together without artifacts on the seams. An alternative way is first to use the estimated PSFs to

approximate the spatially varying PSF by interpolation of adjacent kernels and then compute the image of improved

resolution. The main problem of these naive procedures is that they are relatively slow, especially if applied on too

many positions. We present a new joint approach to the super-resolution and non-uniform deblurring problem. We

use HR PSFs estimated at a few locations in the LR frames to compute the HR TSFs which reveal the camera motion

24



during exposure for the latent HR image. The restoration step is finally carried out using suitable regularization terms

on the image.

5.1 The SR motion blur model

In the discrete domain, the operation of blurring and downsampling can be represented by the following equation.

g (i, j) = D

(
NT∑
l=1

ω (l) f (Hl (i, j))

)
(35)

Here f(i, j) denotes the latent HR image of the scene. g(i, j) is the blurred LR image. Hl(i, j) denotes the image

coordinates when a homographyHl is applied on the point (i, j). (WhenHl(i, j) takes non-integer values, we assign

values to the pixels neighboring Hl(i, j) by bilinear interpolation principle.) D is the downsampling operator or the

decimation operator that models the function of the CCD sensors. A multi-frame method that uses the information

present in adjacent frames is used to increase the spatial resolution of the super-resolved image. If we have K LR

frames, then we can rewrite equation (35) as follows

gk (i, j) = D

(
NT∑
l=1

ωk (l) f (Hlk (i, j))

)
where k = 1, 2, ...,K. (36)

where gk (i, j) is the kth LR observation and ωk andHlk are the associated TSFs and homographies.

5.2 The proposed method

Consider K blurred LR observations g1, g2, ..., gK of a scene which are related to the latent HR image f through the

HR TSFs ω1, ω2, ..., ωK . The objective is to estimate f from g1, g2, ..., gK . To compute the HR TSFs, we re-formulate

the TSF estimation technique in [56] to the SR scenario by using HR blur kernels estimated at a few points in the LR

frames. With the knowledge of the HR TSFs, we solve for the latent HR image f within a regularization framework.

The details of these steps are explained in the following subsections.

5.2.1 HR PSF estimation

Our first step is to estimate HR blur kernels at different locations in the LR frames. To this end, we use [57] to

determine regions in the image with good texture and long edges that are suitable for blur kernel estimation. From this

subset, we select Np point locations, and blurred image patches from the K LR observations (denoted by g1
1g

2
1...g

Np
1 ,
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g1
2g

2
2...g

Np
2 ,..., g1

Kg
2
K ...g

Np
K ) are cropped around these points. Within each set of patches (gi1, g

i
2, ..., g

i
K), we assume

the blur to be space-invariant and use the blind SR technique in [54] to get the HR blur kernels hi1, h
i
2, ..., h

i
K . The

method in [54] requires that the number of observations K needed to estimate the HR blur kernels should be greater

than the SR factor (ε) squared i.e., K > ε2. We found in our experiments that the estimates of the blur kernels from

the method in [54] are quite accurate.

5.2.2 HR TSF from HR PSFs

Our next objective is to estimate the HR TSF ωk that concurs with the Np observed HR blur kernels h1
kh

2
k...h

Np
k for

k = 1, 2, ...K. Note that the TSF ωk ∈ RNT will be a sparse vector in practice because the camera motion during

exposure would result in very few transformations out of all the possible elements of T . Hence while solving for ωk,

we impose a sparsity constraint for regularization. Following [56], we express the blur kernel hik as hik = M i
kωk for

i = 1, 2, ...Np since each component of the blur kernel hik at a given pixel is a weighted sum of the components of

the TSF ωk. Here, M i
k is a matrix whose entries are determined by the location of the blur kernel and the bilinear

interpolation coefficients. Note that the Np point locations were chosen on the LR grid and patches were cropped

around these points from the LR frames. Since the TSFs are being estimated on an HR grid, the Np point locations

should be scaled by the SR factor ε, and our TSF estimation step differs from the method proposed in [56] in this

important respect. If the number of elements in the blur kernel is Nh, then the size of the matrix M i
k will be Nh×NT .

By stacking all the Np blur kernels as a vector hk, and suitably concatenating the matrices M i
k for i = 1, 2, ..., Np,

the HR blur kernels can be related to the HR TSF as

hk = Mkωk (37)

The matrix Mk is of size NpNh×NT . To get an estimate of the HR TSF that is consistent with the observed HR blur

kernels and is sparse as well, we minimize the following cost

argmin
ωk

{
||hk −Mkωk||22 + λ||ωk||1

}
(38)

where the positive scalar λ controls the extent of sparsity of the estimated HR TSF. We estimate each HR TSF

ω1, ω2, ..., ωK separately by minimizing the above cost function using the toolbox in [29].
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5.2.3 Deblurring

Equation (36) can be expressed in the matrix-vector notation [54] as

gk = DHkf (39)

where Hk and D are the matrices that perform the non-uniform blurring and downsampling operations respectively.

Once ω1, ω2, ..., ωK are known, we formulate the energy function based on the observation error and a regulariza-

tion term as

E (f) =
K∑
k=1

||DHkf − gk||22 + αfTLf (40)

where L is the discrete form of the variational prior and is a positive semidefinite block tridiagonal matrix [54]

constructed of values depending on the gradient of f . The rationale behind the choice of this prior is to constrain the

local spatial behaviour of the images. While in smooth areas, it has the same isotropic behaviour as the Laplacian, it

also preserves edges. The disadvantage is that it is highly non-linear and the half-quadratic algorithm has to be used

to minimize (40). α represents the weight of the image smoothness term.

∂E

∂f
= 0⇐⇒

(
K∑
k=1

HT
k D

TDHk + αL

)
f =

K∑
k=1

HT
k D

T gk (41)

HT is equivalent to blurring through a TSF except for the fact the warping to be applied is H−1
l instead of Hl [56].

The matrix DT spreads equally the intensity in LR to ε2 pixels in HR.

We use the method of conjugate gradients to solve (41) and then adjust the solution f to contain values in the

admissible range, typically, the range of values of gk

5.3 Experimental results

We begin with a synthetic example. The image of a tablecloth (of size 530 × 640 pixels) shown in Fig. 12(a) was

used as the latent HR image of the scene. To simulate the shake incurred by a camera during exposure, we manually

generated camera motion with a connected path in the motion space and initialized the weights. Five different HR

TSFs were synthesized thus and the five corresponding blurred LR frames were generated from the latent image by

first blurring (using the TSF model) and then downsampling by a factor of two. For an SR factor of 2, the method in

[54] needs a minimum of five LR images for the computation of the HR PSF. The parameters of the TSF ranged as

follows: θ ranged between -2 to 2 degrees in steps of 0.5, tx and ty ranged between -3 to 3 pixels in steps of one pixel.
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(a)

(b)

(c) (d) (e) (f)

Figure 12: (a) Latent HR image, (b) blurred LR observations, (c) Sroubek et al. [54], (d) upsampled output of

Paramanand et al. [56], (e) upsampled output of Whyte et al. [10], and (f) our output. Row 3: Zoomed-in regions

from the blurred LR observations. Rows 4,5,6: Zoomed-in regions from the original image (first column), Sroubek et

al. [54] (second column), upsampled output of Paramanand et al. [56] (third column), upsampled output of Whyte et

al. [10] (fourth column) and our output (fifth column).
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(a)

(b)

(c) (d)

Figure 13: Real experiment 1: (a) Blurred LR observations, (b) our output, (c), (d) zoomed-in regions from (a) and

(b).
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We selected four spatially separated image patches having good texture from the 265 × 320 LR observations

and used the algorithm in [54] to determine the HR blur kernels corresponding to these patches. The blurred LR

observations with the selected patches (enclosed in white boxes) are shown in Fig. 12(b). The HR TSFs were then

computed from these HR blur kernels using the method described in section 5.2. The deblurred HR image is shown

in Fig. 12(f). The output obtained by using the convolution model in [54] is shown in Fig. 12(c). For comparison, we

also upsampled by a factor two the LR output image of [56] using bicubic interpolation. This is shown in Fig.12(d). It

is to be noted that all five LR observations were given as input to the algorithm in [56]. Another comparision, obtained

by first deblurring one of the LR frames using the technique in [10] and then upsampling the result, is provided in Fig.

12(e). In row 3 of Fig. 12, we show three sets of zoomed-in regions from the five blurred LR observations. Zoomed-

in patches from the original image (first column), output of [54] (second column), upsampled output of [56] (third

column), upsampled output of [10] (fourth column) and our output (fifth column) are shown in rows 4,5 and 6. We

observe that our output is sharper and compares more closely to the original than all the other methods. Fig. 13 depicts

super-resolution results for a real case. Note the improvement in readability of text that accrues after super-resolution.

6 Conclusions, highlights and future directions

In this report, we investigated the problem of processing images and videos in the presence of spatially-varying motion

blur. Intermediate results were produced regularly and information exchanged between PI and Dr. Guna from AFRL

to facilitate interaction and forward movement.

Key accomplishments
Analytical expressions were derived to relate the degree of blur to the nature of the scene and camera motion, and

robust methods were proposed for image deblurring.

• Based on the notion of a global transformation spread function, we propose a formulation that can effectively

restore space-variant motion blurred images affected by arbitrarily-shaped blur kernels.

Our efforts will be valuable in mitigating the effects of motion blur in practical situations.

Following this, we addressed the related problem of automatically detecting occluded regions given a pair of

images of a scene taken from different viewpoints. The occlusion could be due to single or multiple objects. What

makes this problem difficult for surveillance applications is the fact that the image pair is both geometrically and
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photometrically out-of-sync.

• We have presented a unified framework based on sparsity prior for automatically detecting occluder(s). The

method is reasonably robust to non-uniform motion blur as well as variations in camera pose (without the need

for deblurring).

Given the distances involved in aerial imagery and the fact that it is not uncommon to use plexiglass for lens protection,

the problems of deblurring and dehazing often co-occur.

• We have expanded the scope of the restoration problem to not only include deblurring but also dehazing with

the aim of improving loss of visibility due to poor contrast.

Finally, we addressed the problem of estimating the latent high-resolution (HR) image from a set of non-uniformly

blurred low-resolution (LR) images.

• We have presented a new framework that judiciously exploits sub-pixel motion arising from motion blur to

perform super-resolution of images.

The HR TSF, which reveals the camera motion during exposure for the latent HR image, is computed from the LR

frames.

Each of the above-mentioned efforts was comprehensively analyzed and validated with synthetic as well as real

data.

• While some of our new findings have already been published in peer-reviewed avenues, some more are under

review in prestigious international journals.

Expected impact

The related problems of image restoration, registration, dehazing, and superresolution, all in the presence of blurring

due to camera motion, that have been investigated within the ambit of this proposal stand at the cutting edge of

research. The works undertaken in this proposal will go a long way in providing much-needed theoretical insights and

a strong mathematical underpinning into the relatively less-understood but all-prevalent motion blur. The potential

ramifications of the work undertaken are many, some of which are discussed next.

A sharp image is beneficial not only from the perspective of visual appeal but also because it forms the basis for

moving object tracking, change detection, robust feature extraction etc. There is another novel spin to this problem.
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Because the motion blur results from platform motion, knowledge of motion blur can prove to be a valuable cue in

stabilizing the captured video. Our work on registration can form the basis for handling view-point changes as these

can be captured through poses of the camera as part of motion blur estimation and the intensities can be compared

through weighted geometric warps of the images. The twin problems of deblurring and dehazing open up exciting

avenues for future research. If this capability can be achieved on board and in real-time, it can be very valuable for

applications involving aerial surveillance. Our work on superresolution will be especially valuable while attempting

to track targets that occupy just a few pixels. A possible extension to our work will be to allow for depth variations in

the scene.

Future directions

The theories proposed within the ambit of this proposal are not limited to aerial images and can potentially be used in

any situation in which the scene can be modeled as approximately planar. This could include even human faces, for

example. The importance of face recognition cannot be underestimated for homeland security. Current works on face

recognition assume that the face is reasonably focused or at worst suffers from uniform motion blur. Our work can

help generalize the theory of face recognition to non-uniform blurring situations too. The future of face recognition

research is moving towards recognition of subjects in motion and our work will be critical to this futuristic scenario.

Although our focus is on camera motion, the entire theory is also applicable to the case when there is a single

moving object relative to the camera. An interesting off-shoot to this problem arises when you have moving cam-

era as well as moving targets. What is fascinating is that the motion blur can potentially be used for segmenting

independently moving objects in a scene. This is a very fertile area and there is a lot of excitement surrounding it.

We believe that the natural connect that exists between motion blur and alpha-mattes should be exploited to segment

dynamic scenes. As a related spin-off to the motion deblurring problem, it should be possible to exploit the proposed

framework to fork into the exciting area of image forensics to even detect splicing in images.

We shall continue our investigations into the problems of image registration, occlusion detection, and super-

resolution, especially from the viewpoint of low-rank, sparse error matrix decomposition. It is envisioned that this

will lead to a robust analytical and computational framework that can be exploited to address practical scenarios. In

addition, we shall also focus on the recovery of 3D information of scenes imaged by a moving camera. Here, the

motion blur will be harnessed as a cue for depth since the extent of motion blur at an image point is dictated both by

scene structure and camera motion. We shall also investigate the related spin-off problems of splicing detection in the
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exciting domain of image forensics.

Summary statement

The works carried out under this proposal can help foster excellence in basic research, create new scientific under-

standing, and make available unforeseen and innovative technological options for the scientific community. They can

revolutionalize and profoundly impact the future capabilities of the AFOSR/AFRL in their ability to harness valu-

able information from captured image data giving them a distinct technological edge in the air to meet the growing

challenges of the future.

7 Research publications arising out of the efforts

1. P. Abhijith, A.N. Rajagopalan and Guna Seetharaman. Registration and occlusion detection in motion blur, in

Proc. IEEE International Conference on Image Processing (ICIP) Melbourne, Sep. 2013.

2. T. Veeramani, A. N. Rajagopalan and Guna Seetharaman. Restoration of foggy and motion-blurred road scenes,

in Proc. IEEE International Conference on Image Processing (ICIP) Melbourne, Sep. 2013.

3. P. Rao, A.N. Rajagopalan and Guna Seetharaman. Harnessing motion blur to unveil splicing. IEEE Transac-

tions on Information Forensics and Security (under review, revised version submitted).

4. T. Veeramani, A. N. Rajagopalan and Guna Seetharaman. Restoration of foggy and motion blurred images.

IEEE Transactions on Geoscience and Remote Sensing (to be submitted).
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